TOP
im体育农业大学im体育欢迎您!
学校首页 院长im体育 English 怀念旧版
您当前的位置: 首页  师资队伍  教师信息  植物生理学系
王勇
发布时间:2022-06-21 作者: 浏览次数:25129

学  历

博士

教授

所属部门

植物生理学系

招生专业

植物生理学(博士、硕士)

im体育

电话: 0538-8243957  E-mail: wangyong@zo23.com

个人简介

im体育农业大学教授,博士生导师,im体育泰山学者特聘专家。担任中国植物生理与植物分子生物学学会常务理事、中国植物营养与肥料学会植物营养生物学专业委员会委员、中国生物化学与分子生物学学会农业生物化学与分子生物学分会理事、im体育植物生理与分子生物学学会理事长,是Nature PlantsNature CommunicationsMolecular Plant等国际著名学术期刊的专家审稿人。

19869月至19937月在im体育农业大学农学院攻读本科和硕士,毕业后留校在李晴祺教授团队从事小麦遗传育种工作;19997月至9月在中国农科院品种资源研究所贾继增研究员实验室作访问学者;199910月至200010月在法国国家科学研究中心CNRS植物分子生物学研究所(斯特拉斯堡)Dr. Francis Durst实验室作访问学者;200011月至20061月在瑞士洛桑大学植物分子生物学系Prof. Yves Poirier实验室攻读博士,主要研究磷素代谢与调控的分子机制,获植物分子生物学博士学位;20061月至201011月在美国加州大学圣地亚哥分校生物学院Prof. Nigel Crawford实验室做博士后,主要从事植物氮素调控和一氧化氮产生机理的研究;201011月到im体育农业大学im体育任教授,主要从事植物营养分子生物学特别是氮素调控方面的研究,在Molecular PlantPlant CellNew Phytologist等世界知名学术刊物上发表论文40余篇。

研究方向

农业生产过程中由于作物对氮、磷养分的吸收利用率低和肥料的大量施用,造成了严重的地表水富营养化、土壤酸性化、地下水污染等一系列生态和环境问题。培育高氮效、高磷效的高产作物新品种、提高作物的养分利用率是解决上述问题、实现农业可持续发展的关键,对于发展高产高效农业、减少环境污染和节省能源意义重大。本实验室主要围绕植物高效利用氮素的分子机制开展以下几个方面的工作。

 1. 植物硝态氮信号转导途径相关基因的克隆、鉴定。以模式植物拟南芥为研究材料,通过正向遗传学方法筛选硝酸调控突变体,发现并克隆硝态氮信号转导途径上游的重要调控基因;应用植物分子生物学、遗传学、基因组学、生物信息学等学科的理论和技术,深入研究这些基因在硝态氮调控途径中的功能及其表达调控,解析调控硝态氮代谢的基因网络,阐明植物高效吸收利用硝态氮的分子机制。

 2. 作物硝态氮调控基因的克隆、鉴定与利用。运用正、反向遗传学方法,克隆小麦、玉米等农作物中的关键硝态氮调控基因,研究其在作物中的具体功能和作用机理,解码调控硝态氮吸收利用的分子网络,筛选鉴定出能够高效利用氮素的新基因、新种质,为培育高氮效的作物新品种提供理论依据和遗传材料。

 3. 硝态氮影响根系生长发育的分子机理研究。植物的根系具有可塑性,环境中氮素的供应状况直接影响根系的构型,但氮素通过哪些关键基因以及何种机制调节根系的生长发育尚缺乏研究。本实验室则利用筛选出的硝态氮调控基因突变体材料,研究硝态氮对影响主根、侧根形成及生长的关键基因的调控,阐明氮素影响根系发育的分子机制,鉴定出能够高效利用硝态氮的根系构型,为作物的高氮效利用提供理论依据。

代表性论文

1. Fan H*, Quan S*, Ye Q, Zhang L, Liu W, Zhu N, Zhang X, Ruan W, Yi K, Crawford NM, and Wang Y#. 2023. A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana. Molecular Plant, 16(4), 756-774

2. Li N, Duan Y, Ye Q, Ma Y, Ma R, Zhao L,Zhu S,Yu F,Qi S, Wang Y#. 2023. The Arabidopsis eIF4E1 regulates NRT1.1-mediated nitrate signaling at both translational and transcriptional levels. New Phytologist, 2023 Jul 10. doi: 10.1111/nph.19129

3. Gao Y, Qi S, and Wang Y#. 2022. Nitrate signaling and use efficiency in crops. Plant communications, 3(5), 100353

4. Li S*, Li Q*, Tian X, Mu L, Ji M, Wang V, Li N, Liu F, Shu J, Crawford NM, and Wang Y#. 2022. PHB3 Regulates Lateral Root Primordia Formation via NO-mediated Degradation of AUX/IAAs. Journal of Experimental Botany, 73(12):4034-4045

5. Gao Y*, Quan S*, Lyu B*, Tian T, Liu Z, Nie Z, Qi S, Jia J, Shu J, Groot E, Wu J#, Wang Y#. 2021. Barley transcription factor HvNLP2 mediates nitrate signaling and affects nitrogen use efficiency. Journal of Experimental Botany, 73(3), 770–783

6. Hou Y*, Sun J*, Wu B*, Gao Y*, Nie Z, Quan S, Wang Y#, Cao X#, Li S#. 2021. CPSF30-L-mediated recognition of mRNA m6A modification controls alternative polyadenylation of nitrate signaling related gene transcripts in Arabidopsis. Molecular Plant, 14(4), 688-699

7. Liu H*, Liu S*, Du B*, Dong K, Wang Y, Zhang Y#. 2021. Aloe vera gel coating aggravates superficial scald incidence in “Starking” apples during low-temperature storage. Food Chemistry, 339, 128151

8. Gao Y, Song X, Liu K, Li T, Zheng W, Wang Y, Liu Z#, Zhang M#, Chen Q, Li Z, Li R, Zheng L, Liu W, Miao T. 2021. Mixture of controlled-release and conventional urea fertilizer application changed soil aggregate stability, humic acid molecular composition, and maize nitrogen uptake. Science of the Total Environment, 789: 147778

9. Chu X, Li M, Zhang S, Fan M, Han C, Xiang F, Li G, Wang Y, Xiang C, Wang J#, Bai M#. 2021. HBI-TCP20 interaction positively regulates the CEPs-mediated systemic nitrate acquisition. Journal of Integrative Plant Biology, 63 (5): 902-912

10. Fan H, Quan S, Qi S, Xu N, Wang Y#. 2020. Novel aspects of nitrate regulation in Arabidopsis. Frontiers in Plant Science, 11, 574246

11. Liu H, Ma X, Liu S, Du B, Cheng N, Wang Y, Zhang Y#. 2020. The nicotiana tabacum L. major latex protein-like protein 423(NtMLP423) positively regulates drought tolerance by ABA-dependent pathway. BMC Plant Biology, 20 (1): 475

12. Yang J*, Zhang G*, An J, Li Q, Chen Y, Zhao X, Wu J, Wang Y, Hao Q, Wang W#, Wang W#. 2020. Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Plant Science, 298, 110596

13. Wu Y*, Wang W*, Li Q, Zhang G, Zhao X, Li G, Li Y, Wang Y, Wang W#. 2020. The wheat E3 ligase TaPUB26 is a negative regulator in response to salt stress in transgenic Brachypodium disachyon. Plant Science, 294, 110441

14. Liu F*, Xu Y*, Chang K, Li S, Liu Z, Qi S, Jia J, Zhang M, Crawford NM, Wang Y#. 2019. The long noncoding RNA T5120 regulates nitrate response and assimilation in Arabidopsis. New Phytologist, 224(1), 117-131

15. Wang W*, Hao Q*, Wang W*, Li Q, Chen F, Ni F, Wang Y, Fu D, Wu J#, Wang W#. 2019. The involvement of cytokinin and nitrogen metabolism in delayed flag leaf senescence in a wheat stay-green mutant, tasg1. Plant Science, 278: 70-79

16. An J*, Li Q*, Yang J*, Zhang G, Zhao Z, Wu Y, Wang Y, Wang W#. 2019. Wheat F-box Protein TaFBA1 Positively Regulates Plant Drought Tolerance but Negatively Regulates Stomatal Closure. Frontiers in Plant Science, 10:1242

17. Wang W*, Li Q*, Tian F*, Deng Y*, Wang W, Wu Y, Yang J, Wang Y, Hao Q#, Wang W#. 2019. Wheat NILs contrasting in grain size show different expansion expression, carbohydrate and nitrogen metabolism that are correlated with grain yield. Field Crops Research, 241: 107564

18. Wang W*, Wang W*, Wu Y, Li Q, Zhang G, Shi R, Yang J, Wang Y, Wang W#. 2019. The involvement of wheat U-box E3 ubiquitin ligase TaPUB1 in salt stress tolerance, Journal of Integrative Plant Biology, 62(5):631-651

19. Zhuang K*, Kong F*, Zhang S, Meng C, Yang M, Liu Z, Wang Y, Ma N#, Meng Q#. 2018. Whirly1 enhances tolerance to chilling stress in tomato via protection of photosystem II and regulation of starch degradation. New Phytologist, 221(4):1998-2012

20. Zhao L*, Liu F*, Crawford NM, Wang Y#. 2018. Molecular regulation of nitrate responses in plants. International Journal of Molecular Sciences, 19, 2039

21. Wang C, Zhang W, Li Z, Li Z, Bi Y, Crawford NM, Wang Y#. 2018. FIP1 plays an important role in nitrate signaling and regulates CIPK8 and CIPK23 expression in Arabidopsis. Frontiers in Plant Science. 9:593

22. Zhao L, Zhang W, Yang Y, Li Z, LiN, Qi S, Crawford NM, Wang Y#. 2018. The Arabidopsis NLP7 gene regulates nitrate signaling via NRT1.1-dependent pathway in the presence of ammonium. Scientific Reports. 8:1487

23. Zhang S, Wang S, Lv J, Liu Z,Wang Y, Ma N#, Meng Q#. 2018. SUMO E3 ligase SlSIZ1 facilitates heat tolerance in tomato. Plant and Cell Physiology. 59(1): 58-71

24. Cao H*, Qi S*, Sun M, Li Z, Yang Y, Crawford NM., Wang Y#. 2017. The maize ZmNLP4 and ZmNLP8 genes play essential roles in nitrate signaling and assimilation. Frontiers in Plant Science. 8:1703

25. Li Z*, Wang R*, Gao Y*, Wang C, Zhao L, Xu N, Chen KN, Qi S, Zhang M, Tsay YF, Crawford NM, Wang Y#. 2017. The Arabidopsis CPSF30-L gene plays an essential role in nitrate signaling and regulates the nitrate transceptor gene NRT1.1. New Phytologist. 216(4):1205-1222

26. Wang G, Zhang S, Ma X, Wang Y, Kong F#, Meng Q#. 2016. A stress-associated NAC transcription factor (SINAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiologia Plantarum. 158(1), 45-64

27. Yang W*, Dong R*, Liu L, Hu Z, Li J, Wang Y, Ding X#, Chu Z#. 2016. A novel mutant allele of SSI2 confers a better balance between disease resistance and plant growth inhibition on Arabidopsis thaliana. BMC Plant Biology. 16: 208

28. Xu N*, Wang R*, Zhao L, Zhang C, Li Z, Lei Z, Liu F, Guan P, Chu Z, Crawford N, Wang Y#. 2016. The Arabidopsis NRG2 protein mediates nitrate signaling and interacts with and regulates key nitrate regulators. Plant Cell. 28, 485-504

29.Wang Y, Ries A, Wu K, Yang A, Crawford N#. 2010. The prohibitin gene AtPHB3 functions in hydrogen peroxide induced nitric oxide accumulation and nitric oxide-mediated responses. Plant Cell. 22(1), 249-59

30. Wang R, Xing X, Wang Y, Tran A, Crawford N#. 2009. A genetic screen for nitrate-regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiology. 151(1), 472-478

31. Ribot C, Wang Y, Poirier Y#. 2008. Expression analysis of three member of the AtPHO1 family reveal different interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid. Planta. 227(5), 1025-1036

32.Wang Y*, Secco D*, Poirier Y#. 2008. Characterization of the PHO1 gene family and the responses to phosphate deficiency of Physcomitrella patens. Plant Physiology. 146, 646-656

33. Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y#. 2007 Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant Journal. 50 (6), 982-994

34. Benveniste I, Saito T, Wang Y, Huang H, Kandel S, Pinot F, Kahn RA, Salaun JP, Shimoji M#. 2006. Evolutionary relationship and substrate specificity of Arabidopsis thaliana fatty acid omega-hydroxylase. Plant Science. 170, 326-338

35. Benveniste I, Bronner R, Wang Y, Compagnon V, Michler P, Schreiber L, Salaun JP, Durst F, Pinot F#. 2005. CYP94A1, a plant cytochrome P450-catalyzing fatty acid ω-hydroxylase, is selectively     induced by chemical stress in Vicia sativa seedlings. Planta. 221, 881-890

36. Wang Y, Ribot C, Rezzonico E, Poirier Y#. 2004. Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Physiology. 135, 400-411



版权所有@im体育农业大学im体育
鲁ICP备05002369号